Environment and Climate Change Canada

Ministry of Agriculture, Food and Rural Affairs

environmental science

Quantifying the Flows of Phosphorus in Ontario

Prepared for: Brad Bass (ECCC) and Gabrielle Ferguson (OMAFRA) By: Ryan Carlow, Kathleen McTavish, Anthony Carter, Megan Stansfield, and Johanna Burrows

What we know: Phosphorus is a finite resource, a limiting nutrient to plant growth, and is the cause of eutrophication of many lakes, most notably, Lake Erie.

Project Goal:

Create flow maps of phosphorus through and between the different sectors of Ontario, quantifying P where possible.

Industry

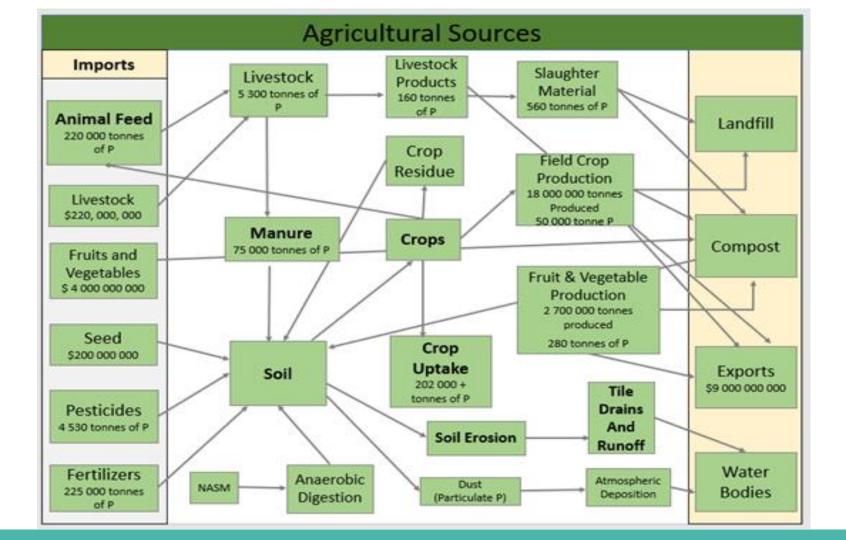
Imports

- Transportation Parts
- Electrical and Electronic Products
- Chemicals
- Phosphate Compounds
- Cereals
- Fertilizers and Pesticides
- Livestock and Livestock Products
- Food products

<u>P in Industry</u>

- Fertilizers and Pesticides
- Motor Vehicles
- Chemicals
- Plastics and Rubber
- Steel and Metal
- Electrical and Electronic Parts
- Machinery
- Soft drinks
- Meat, fish, and dairy products
- Food processing byproducts
- Cosmetics
- Wood and paper products
- Food products

Exports


- Metals
- Chemicals
- Electrical and electronic products
- Wood and paper products

<u>Landfill</u>

Industrial Waste

Wastewater and Stormwater

Major Inputs

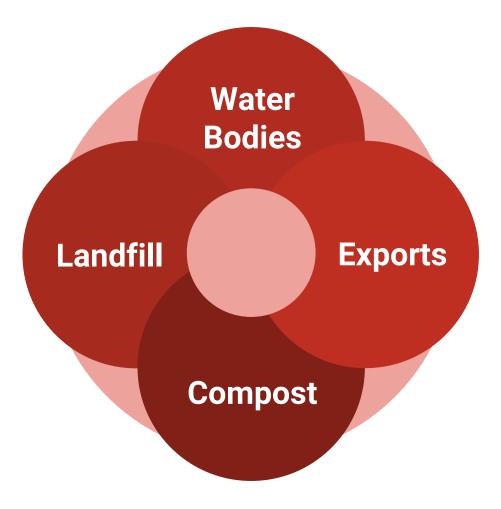
Seed	Seed Coating contains a portion of P	200 Million Dollars in Ontario Sale
Fertilizer	MAP and DAP	225 000 Tonnes of P
Feed	P additives to increase animal growth	220 000 Tonnes of P
Pesticides	Some break down in the soil into P compounds	25 000 tonnes of Active Ingredient P Pesticides

Within the System

Products

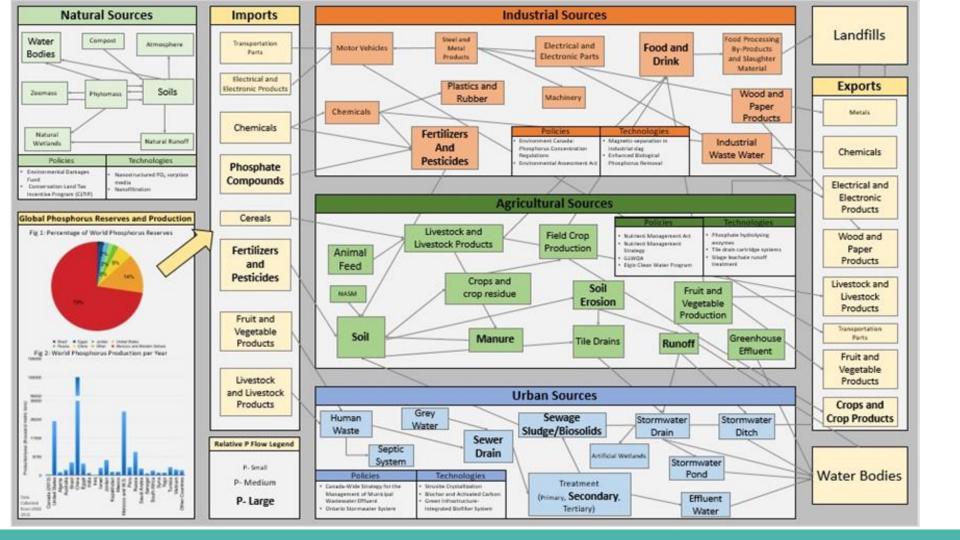
Livestock 150 Tonnes

Fruit and Veg 280 Tonnes


Field Crops 1800 Tonnes+ Manure adds an additional 75 000 Tonnes of P

Seed, Pesticides, and Fertilizers Crop Uptake Removes 200 000 Tonnes of P

Soil


Unknown amounts lost to runoff and erosion

Changes from 2011 to 2016

Ag Product	Change- 2011-2016/17	
Cropland Area	Increase (Corn and Soy)	
Livestock	Increase (Poultry and Pigs)	
Total Manure Production	Decrease (Dairy and Beef)	
Fertilizer Sales	Decrease (DAP)	
Fruit and Veg Production	Increase (Field)	
Exports	Increase (Grains and Veg)	
Imports	Increase (Feed and Fruit)	

Final Thoughts

- Phosphorus flows in Ontario are complex and dynamic
- Data on total numbers and quantities are hard to find
- Phosphorus is in everything
- Many opportunities along the way to implement policy and technologies to target specific flows
- Need to focus reduction and reuse efforts on all areas not just one