

Opportunities for reining in coal dependence in the power sector

Karthik Ganesan and Danwant Narayanaswamy

Parishad Webinars | Assessing COVID-19 impacts and the stimulus needs for India's power sector 27 July 2020

CEEW – Among South Asia's leading policy research institutions

Energy Access

Industrial Sustainability &

Renewables

Low-Carbon Pathways

Power Sector

Risks & Adaptation

Technology, Finance & Trade

CEEW Centre for Energy Finance

Background

- Discoms are reeling under huge financial stress
 - Power purchase costs constitute between 75 and 80 per cent* (on average) of the total costs of supply incurred by a discom
 - A flawed merit order is in place across thermal generation an we aren't getting cost-effective power

 Total dues payable to generators stands at INR 117,131 Crore ** at the end of May 2020

Objective

- To facilitate efficient transition towards market-based economic dispatch mechanism for power
- To find a path to financial solvency for the power generating assets
- To reduce the air pollution attributable to power sector

How can we do more, with less coal?

Newer plants punching well below their weight

Draft – do not cite, under review

What does the surplus mean for operations?

Despite having low variable cost, the PLF of 5-10 year group is low

Draft – do not cite, under review

Delivered coal price overrides technical attributes in determining VC

Delivered coal cost of older plants makes them competitive

Draft – do not cite, under review

Older plants are inefficient and firing more coal per MW

Partial loading of power plants also increases coal requirement

Draft – do not cite, under review

Older plants have higher self-consumption and leave less to be sold

Draft – do not cite, under review

A reallocation scenario

- We do a greedy reallocation of generation where efficient plants are dispatched first
 - VC is distorted and hence the choice of efficiency
- Saturation PLFs are fixed based on the respective age groups of the plants
 - Newer plants have higher operational limits and older progressively lesser
 - Also allows for flexing capabilities to be utilized from older plants

Plant loading impacts coal use and VC

- 10 years older and you are penalised 0.5 T/MW/day *
- An 800 MW unit can benefit by 1.2 T/MW/day **
- A 20% increase in PLF implies a benefit of 0.5 T/ MW/day and 10 paise / kWh reduction in VC

Long serving plants that don't meet efficiency metrics any more

WANAKBORI **TUTICORIN** SINGRAULI SANJAY GANDHI ARICHHA D.P.L BHATINDA KUTCH LIG. ANPAR SABARMAT GANDHINAGAR DURGAPUR

Many younger plants that can be mothballed in the interim

We can avoid as much as one day's worth of generation just from auxiliary consumption reduction

Draft – do not cite, under review

Prioritizing efficient plants would save 53 MT of coal annually

Draft – do not cite, under review

What does it leave on the table?

Variable	Annual savings (INR crore)
Auxiliary consumption	544
Coal consumption	19,234
Variable cost outlay	5,749
Total	25,527

Possibly enough to pay the dues to relegated plants?

What do we lose out when we chase efficiency?

The system becomes less flexible without some of the older assets

Draft – do not cite, under review

CEEW 10

Regional balance in generation changes, but not much

Draft – do not cite, under review

States affected by generation reallocation

State	% diff
West Bengal	-53%
Jharkhand	-42%
Delhi	-27%
Rajasthan	-27%
Bihar	-11%
Tamil Nadu	9%
Chhattisgarh	9%
Punjab	12%
Haryana	14%
Karnataka	41%

Retrofitting for pollution control or not?

- Is there an economic case for installing PCTs in older plants?
 - In theory: Remaining 'economic' life of the plant is less and installing PCTs would significantly increase tariff (even if passed through)
 - In practice: 39 GW capacity, older than 25 years, was generating in 2019
- If life extension is the norm, retrofitting must be mandated but much ambiguity remains
- Retrofitting the plants that are relegated under the reallocated scenario and aged above 25 years would require a capex of INR 10,871 crore*
- If these plants are not retrofitted, the capex shall be spent in scale of INR
 0.09/kWh of electricity purchased between FY 21 to FY 27

Takeaways

- There is an economic opportunity to accelerate the phase out of 'inefficient' plants
- Making the system leaner, results in significant gains
 - Lower Coal use and lower variable costs
- We will be left with enough surplus to pay for assets that had to be forced out
 - Between 55% and 60% of our 2027 needs can be satisfied just with the plants we keep
- Pollution retrofits must take priority and for this reason we must take a strategic call on what to keep and what to drop

Thank you

ceew.in | @CEEWIndia

